Varicose and cheerio collaborate with pebble to mediate semaphorin-1a reverse signaling in Drosophila.

نویسندگان

  • Sangyun Jeong
  • Da-Som Yang
  • Young Gi Hong
  • Sarah P Mitchell
  • Matthew P Brown
  • Alex L Kolodkin
چکیده

The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Control of Semaphorin-1a-Mediated Reverse Signaling by Opposing Pebble and RhoGAPp190 Functions in Drosophila

Transmembrane semaphorins (Semas) serve evolutionarily conserved guidance roles, and some function as both ligands and receptors. However, the molecular mechanisms underlying the transduction of these signals to the cytoskeleton remain largely unknown. We have identified two direct regulators of Rho family small GTPases, pebble (a Rho guanine nucleotide exchange factor [GEF]) and RhoGAPp190 (a ...

متن کامل

Plexin a-semaphorin-1a reverse signaling regulates photoreceptor axon guidance in Drosophila.

While it is well established that Semaphorin family proteins function as axon guidance ligands in invertebrates and vertebrates, several recent studies indicate that the Drosophila Semaphorin-1a (Sema1a), a transmembrane Semaphorin, can also function as a receptor during neural development. The regulator of Sema1a reverse signaling, however, remains unknown. In this study, we show that like Sem...

متن کامل

Sema-1a Reverse Signaling Promotes Midline Crossing in Response to Secreted Semaphorins.

Commissural axons must cross the midline to form functional midline circuits. In the invertebrate nerve cord and vertebrate spinal cord, midline crossing is mediated in part by Netrin-dependent chemoattraction. Loss of crossing, however, is incomplete in mutants for Netrin or its receptor Frazzled/DCC, suggesting the existence of additional pathways. We identified the transmembrane Semaphorin, ...

متن کامل

The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin A-mediated axonal repulsion.

Cyclic nucleotide levels within extending growth cones influence how navigating axons respond to guidance cues. Pharmacological alteration of cAMP or cGMP signaling in vitro dramatically modulates how growth cones respond to attractants and repellents, although how these second messengers function in the context of guidance cue signaling cascades in vivo is poorly understood. We report here tha...

متن کامل

Drosophila Plexin B is a Sema-2a receptor required for axon guidance.

Plexin receptors play a crucial role in the transduction of axonal guidance events elicited by semaphorin proteins. In Drosophila, Plexin A (PlexA) is a receptor for the transmembrane semaphorin semaphorin-1a (Sema-1a) and is required for motor and central nervous system (CNS) axon guidance in the developing embryonic nervous system. However, it remains unknown how PlexB functions during neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 39  شماره 

صفحات  -

تاریخ انتشار 2017